Hydrogen production via steam reforming of LPG on Ni/Zeolite catalysts
Authors
Abstract:
Steam reforming is one of the most important processes for producing hydrogen from hydrocarbon fuels such as LPG and has attracted much attention due to its high efficiency and economy. In this study, the LPG steam reforming reaction was investigated on nickel catalysts supported on four various zeolites (H-Y, Na-Y, HZSM5 and Ferrierite). The catalytic tests were performed in a tubular fixed bed stainless steel reactor (I.D. 10 mm) at 650°C. Results revealed that type of support and specific surface area have significant effects on the activity and selectivity of the prepared catalyst. In this way, Ni/Na-Y catalyst exhibited the highest surface area (696.4 m2/g) among the prepared catalysts. Also, this catalyst showed a low degree of coke formation and consequently, high stability in LPG steam reforming process. Ultimately, The catalytic results showed that the Ni/Na-Y catalyst possessed the highest LPG conversion (95.7 %), H2 yield (48.6%) and stability in this reaction.
similar resources
hydrogen production via steam reforming of lpg on ni/zeolite catalysts
steam reforming is one of the most important processes for producing hydrogen from hydrocarbon fuels such as lpg and has attracted much attention due to its high efficiency and economy. in this study, the lpg steam reforming reaction was investigated on nickel catalysts supported on four various zeolites (h-y, na-y, hzsm5 and ferrierite). the catalytic tests were performed in a tubular fixed be...
full textHydrogen Production via Steam Reforming with CO2 Capture
Hydrogen demand in refineries is increasing vigorously due to the stringent transportation fuel specifications, furthermore the interest in the so-called hydrogen economy developed in the recent years put the hydrogen as energy carrier in the centre of a growing interest. More than 95% of the hydrogen for refinery use is nowadays produced via hydrocarbon steam reforming, where Foster Wheeler pl...
full textEffect of Pt on Zn-Free Cu-Al Catalysts for Methanol Steam Reforming to Produce Hydrogen
Steam reforming of methanol can be considered as an attractive reaction aiming at hydrogen production for PEM fuel cells. Although Cu/Al-contained catalysts are considerably evaluated in this reaction, further evaluation is essential to evaluate the impact of some promoters like Pt in order to find a comprehensively optimized catalyst. Pt promoter is employed with different methods in this ...
full textPropene versus propane steam reforming for hydrogen production over Pd-based and Ni-based catalysts
Experiments of propane and propene steam reforming have been performed over a Pd–Cu/c-Al2O3 catalyst and over a Ni/NiAl2O4 catalyst. Over the palladium-based catalyst, the steam reforming of propene is faster and more selective than steam reforming of propane. Over the Pd catalyst, the steam reforming of propane is likely inhibited by site poisoning. In contrast, over Ni-based catalyst the refo...
full textHydrogen Production via Acetic Acid Steam Reforming over HZSM-5 and Pd/HZSM-5 Catalysts and Subsequent Mechanism Studies
Acetic acid (HOAc) was selected as a bio-oil model compound for the steam reforming of bio-oil for hydrogen production. The influence of temperature and steam-to-carbon ratio (S/C) on the steam reforming of HOAc over hydrogen-type Zeolite Socony Mobil-5 (HZSM-5) and the catalyst with added Pd (Pd/HZSM-5) have been investigated in a fixedbed reactor. Brunauer–Emmett–Teller surface area measureme...
full textMy Resources
Journal title
volume 1 issue 4
pages 233- 238
publication date 2015-08-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023